Viterbi sparse spike detection

نویسندگان

  • Samuel P. Brown
  • Michael S. Thorne
چکیده

Accurate interpretation of seismic traveltimes and amplitudes in the exploration and global scales is complicated by the band-limited nature of seismic data. We discovered a stochastic method to reduce a seismic waveform into a most probable constituent spike train. Model waveforms were constructed from a set of candidate spike trains convolved with a source wavelet estimate. For each model waveform, a profile hidden Markov model (HMM) was constructed to represent the waveform as a stochastic generative model with a linear topology corresponding to a sequence of samples. Each match state in the HMM represented a sample in the model waveform, in which the amplitude was represented by a Gaussian distribution. Insert and delete states allowed the underlying source wavelet to dilate or contract, accounting for nonstationarity in the seismic data and errors in the source wavelet estimate. The Gaussian distribution characterizing each sample’s amplitude accounted for random noise. The Viterbi algorithm was employed to simultaneously find the optimal nonlinear alignment between a model waveform and the seismic data and to assign a score to each candidate spike train. The most probable traveltimes and amplitudes were inferred from the alignments of the highest scoring models. The method required no implicit assumptions regarding the distribution of traveltimes and amplitudes; however, in practice, the solution set may be limited to mitigate the nonuniqueness of solutions and to reduce the computational effort. Our analyses found that the method can resolve closely spaced arrivals below traditional resolution limits and that traveltime estimates are robust in the presence of random noise and source wavelet errors. The method was particularly well suited to fine-scale interpretation problems such as thin bed interpretation, tying seismic images to well logs, and the analysis of anomalous waveforms in global seismology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Estimation of Linear and Nonlinear Sparse Channels

This paper presents a Clustering Based Blind Channel Estimator for a special case of sparse channels – the zero pad channels. The proposed algorithm uses an unsupervised clustering technique for the estimation of data clusters. Clusters labelling is performed by a Hidden Markov Model of the observation sequence appropriately modified to exploit channel sparsity. The algorithm achieves a substan...

متن کامل

A compositional origin to ultralow-velocity zones

We analyzed vertical component short-period ScP waveforms for 26 earthquakes occurring in the Tonga-Fiji trench recorded at the Alice Springs Array in central Australia. These waveforms show strong precursory and postcursory seismic arrivals consistent with ultralow-velocity zone (ULVZ) layering beneath the Coral Sea. We used the Viterbi sparse spike detection method to measure differential tra...

متن کامل

Visual Strategies for Sparse Spike Coding

We explore visual spike coding strategies in a neural layer in order to build a dynamical model of primary vision. A strictly feed-forward architecture is compared to a strategy accounting for lateral interactions that shows sparse spike coding of the image as is observed in the primary visual areas [1]. This transform is defined over a neural layer according to a greedy matching pursuit scheme...

متن کامل

Temporal Representation in Spike Detection of Sparse Personal Identity Streams

Identity crime has increased enormously over the recent years. Spike detection is important because it highlights sudden and sharp rises in intensity relative to the current identity attribute value (which can be indicative of abuse). This paper proposes the new spike analysis framework for monitoring sparse personal identity streams. For each identity example, it detects spikes in single attri...

متن کامل

Equalization of Sparse Isi Channels Using Parallel Trellises

| The Viterbi algorithm (VA) can be reformulated such that the calculations can be performed over a set of independent parallel trellises for a class of sparse channels. This new algorithm named the parallel trellis Viterbi algorithm (PTVA) reduces the complexity of the Viterbi algorithm, however, it has no loss in performance for the special class of intersymbol interference (ISI) channels. Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013